

Abby[™]全自动蛋白表达分析系统 简明用户手册

ProteinSimple

Revision 3.1, Aug 2022

目 录

1.	准备样品和抗体	3
2.	准备Abby	5
3.	加样	6
5.	运行状态和实验结束	12
6.	数据分析	13
8.	注意事项	27
9.	常见问题	28
10	.订购信息	29

1. 准备样品和抗体

- 1) 样品的制备方法与传统 WB 相同
 - ◆ 样品保存在裂解液 (Lysis Buffer) 中
 - ◆ 某些裂解液成分可能会对实验结果有影响
 - ➤ 建议查阅《Simple Western Buffer Compatibility.pdf》
 - ◆ 不要加入 Western 上样缓冲液 (Loading buffer)
- 2) 通过 BCA 试剂盒测定蛋白质浓度
 - ◇ 浓度建议在 3 µg/µL 或以上,如果靶蛋白丰度低(如磷酸化蛋白),推荐上样终浓度 2 µg/µL,其他靶蛋白可选择 0.5 µg/µL
 - - ProteinSimple 提供 10 × Sample Buffer,需要取出部分用去 离子水稀释成相应浓度后使用
 - ▶ 10 × Sample Buffer 可以单独订购, 货号为 042-195
 - ◇ 如果样品裂解时不含 SDS(如在PBS缓冲液中超声破碎),样品 需用 1×Sample Buffer 稀释以保证有足量的SDS与蛋白质结合
- 3) 测定浓度后,样品可分装冻存在-80 ℃ 冰箱直到使用时取出
- 4) 一抗稀释方法
 - ♦ 使用 ProteinSimple 提供的 Antibody Diluent II 稀释后使用
 - ◆ 建议购买 Simple Western 验证过的抗体,货号和稀释度可查询 抗体数据库:
 <u>https://www.bio-techne.com/cn/resources/simple-western-</u> antibody-database
 - ◇ 如果您使用的一抗不在抗体数据库里,建议比抗体说明书 (datasheet) 里推荐的 Western 浓度高 10 – 20 倍,即抗体说 明书推荐 1:1000, Abby 则用 1:50 - 1:100 的稀释度

- 5) 二抗
 - ◆ 目前 ProteinSimple 提供的商品化 HRP 二抗有 anti-Mouse/Rabbit/Goat/Human IgG,您不需要准备这几种二抗
 - ◆ 如果您的一抗种属来源不在该列表中,建议您搜索抗体数据库, 购买相应二抗,用 ProteinSimple 提供的 Antibody Diluent II 稀释 后使用,如 anti-Rat HRP 二抗,推荐 Abcam ab6734, 1:100 稀 释
 - ◆ 如果您使用的二抗不在抗体数据库里,请您与我们的技术支持联系

2. 准备Abby

 1) 实验室的温度确保在 18 – 24 ℃之间,湿度在 20 – 60 % 之间。如果 温度、湿度未达到要求,请打开空调、除湿机或其他相关设备,直 到达到要求再开始实验。

File Edit Instrument Window Help

- 2) 依次打开 Abby、电脑和 Compass 软件。
 - ◇ 如果电脑连接上 Abby, 会显示 ^{● Ready} Lateral
 - ◇ 如果电脑没有连接上 Abby, 请点击 Instrument > Connect
- 3) 进行硬件自检。
 - ◆ 轻轻触碰 Abby 门上部的银色区域,打开门,用不掉纸屑的拭镜
 纸蘸取无水乙醇清洗斜面,去除灰尘或者指纹

- ◇ 点击 Instrument > Self-Test 进行 Abby 硬件自检,时间大约需要
 30 分钟
- ♦ 我们建议您在使用前执行自检,以排除任何潜在的硬件问题

3. 加样

- 1) 请根据试剂盒内附的说明书要求进行操作
- 2) 下面以 SM-W004 和 DM-001 为例,介绍实验的具体过程:
 - a) 准备冰盒和碎冰,取出存放在4℃的两个透明塑料盒 (PS-ST01-EZ-8和DM-001),将其中的试剂冰上放置;

b) 打开一袋蓝纸包(EZ Standard Pack 1), 取出里面 3 根管子;

- c) 将所有 0.2 mL 管的铝箔撕开或用手拿着枪头戳个洞;
- d) 配制 DTT:透明管内有白色 DTT 粉末,加入 40 μL 去离子水,吹 打均匀;

biotechne[®] protein simple

 e) 配制 5× Master Mix (即 Loading Buffer): 粉色透明管内有粉色 Master Mix 粉末,加入 20 μL DTT 溶液(上一步配的,如果想进 行非还原电泳,可以水代替 DTT), 20 μL 10× Sample Buffer (在橙色试剂盒内),吹打均匀;

 f) 配制 Ladder (即 marker, 分子量标准品): 淡蓝色透明管内有 粉色 Ladder 粉末, 加入 20 µL 离子水, 吸打混匀即可, 无需加热 变性;

- g) 配制样品:
 - 1 个孔需要 3 µL 样品(加入了 Master Mix 的),为了防止变性时的蒸发,建议 1 个孔配 1.5 个孔的量,假设样品浓度为y,以下为配制 1 个孔所需要的体积(下表仅为举例,实际上样浓度应根据自己的样品类型、蛋白本底表达量和抗体效价综合而定):

终浓度	样品原液	5× Master	0.1× Sample Buffer	总体积
(µg/µL)	(µL)	Mix (µL)	(µL)	(µL)
0.2	0.2 × 4.5/ y	0.9	$4.5 - (0.2 \times 4.5/y) - 0.9$	4.5
1	1× 4.5/ y	0.9	4.5 – (1× 4.5/ y) – 0.9	4.5

- ▶ 将配制好的样品放在 95℃ 变性 5分钟;
- 变性结束后将样品取出,冰上冷却 5 分钟。冷却后涡旋振荡混 匀,再短暂离心,放在冰上待用;
- h) 配制一抗: 一抗用 Antibody Diluent II 稀释后放在冰上待用;
 - ➢ 每孔需要 10 µL 稀释后的一抗,根据总数适当放量 1-2 个孔

- i) 二抗即开即用无需配制;
- j) 配制发光液: Lumino-S 和 Peroxide 各取 200 μL, 涡旋振荡混
 合, 放在冰上待用;

- k) 从橙色试剂盒里取出板子,将配制好的试剂依次加入板内:
 - 注意!加样时可用反相吸液法,即第二档吸,第一档打,这样可以留少量液体在枪头中,以避免将枪头中的空气吹入液体内形成气泡。
 - A 行: A1 为 Ladder, 5 μL, 其余孔为样品, 体积 3 μL
 - B 行: Antibody Diluent II (抗体稀释液),体积 10 μL
 - C 行: C1 为 Antibody Diluent II, 其余孔为稀释的一抗, 体积 10 μL
 - D 行: D1 为 Streptavidin-HRP, 其余孔为相应的二抗, 体积 10 μL
 - E 行:发光液,体积 15 µL
 - F行:空

bio-techne[®] protein simple

紧邻 F 行的三大行内每格加入 450 -500µL Wash Buffer (Wash Buffer 在橙色试剂盒内)

- I) 盖上盖子, 配平后在室温 2500 rpm (~ 1000 g) 离心 5 分钟;
 - > 注意! 一定要加盖子
 - ▶ 注意! 离心机不能制冷
 - ▶ 离心后检查并确认孔底无气泡
 - ▶ 注意如果是 13 根毛细管, 试剂均加在第 7-19 孔

4. 上机操作

1) 双击打开 Compass for SW, 在点击 File > New Assay;

	🚸 Abby - Compass fo	or SW		
SW	File Edit Instrument	Window	v Help	
	New Assay	>	Abby	
Compass for	Open Assay	>	Jess	
CIM	Save		Wes	
SW	Save As			

- 2) 在弹出的新窗口中选择相应的程序,点击 OK 加载;
 - ◆ 默认程序的参数已经过优化 (推荐)

💿 New Abby Assay 🛛 🕹 🗙							
Assay Type Single Assay RePlex Total Protein	Size Range 2-40 kDa 12-230 kDa 66-440 kDa	Cartridge 25 13 					
	OK	Cancel					

- ◆ 根据实验所用试剂选择 Assay Type, 默认为 Single Assay 化学 发光检测
- ♦ 根据板上标注的分子量范围选择 Size Range
- ♦ 根据毛细管包装上标注的数目选择 Cartridge

📰 Protocol 🔚 History 🍱 Notes	
	Value
Separation Matrix	
Stacking Matrix	
> Sample	
Separation Time (min)	25.0
Separation Voltage (volts)	375
> Antibody Diluent Time (min)	5.0
Primary Antibody Time (min)	30.0
Secondary Antibody Time (min)	30.0
✓ Detection	
Well Row	E1
Detection Profile	HDR

- 3) 轻轻触碰 Abby 门上部的银色区域, 打开门;
- 4) 撕开毛细管的包装, 取出毛细管放入 Abby;
 - ◆ 注意!请从黑色基座两侧拿取,不要直接接触毛细管

- 5) 将离心后的板子取出,一手按住板子,一手撕去封膜,将板子放入 Abby;
 - ◇ ProteinSimple 的新板子比之前的更紧一些,放入时请遵循以下步骤: 1)将板子靠近你的一侧(胶和电泳液的一侧)略微倾斜放到仪器内部板托盘,小心不要把试剂洒出来; 2)轻轻地往下推动远离你的那侧板子,让它完全平躺在板托盘上。

- 6) 关门, 稍等 5 秒钟等门锁止, 点击 Start 开始运行;
- 7) 弹出的对话框内可选择文件的存储位置,默认路径:我的文档 \Compass\Runs 文件夹内。

- 5. 运行状态和实验结束
- 1) 开始运行以后, Compass 软件会自动进入 Run Summary 界面, 并显示实验的步骤和时间

📑 Assay	🕑 Run Su	immary 🅼	Analysis			
Sample	Sep	В	1 °	2°	Detect	Results
	•	В	1° 🕐	2°()		ł
10:18 上午	10:23 上午	11:13 上午	11:19 上午	11:56 上午	12:37 下午	12:53 下午

♦ 开始运行后10分钟可以看到蛋白质进入毛细管内;

	Assay 🖓 Run Summary	Analysis
Separation 🛃 IV Plot		- 0
C		

- ◆ 无需等待实验结束,结果可第二天再来看
- 2) 实验结束后, 轻触开门, 将毛细管和板子取出丢弃;
- 3) 依次关闭 Compass 软件和电脑。

6. 数据分析

以下分析方法适用于 Compass (v6.1.0) 及以上版本, 您可以从以下链 接下载最新版 Compass (v6.1.0) 软件及相关资料:

http://proteinsimple.com/compass/downloads/

1) 板型布局:

- ◆ 如果实验开始前没有来得及设定布局,请在实验结束后设定;
- ◇ 点击进入 Assay 界面,在 Template 里面双击任意孔会弹出新窗 口,Name 填入名称,Attribute 填入终浓度,可以利用 Ctrl+C 和 Ctrl+V 进行孔复制粘贴,也可以利用 Shift 和 Ctrl 连续选择多个孔 进行填充,甚至可以从 Excel 复制过来粘贴;

😨 Abby - Compass for SW File Edit Instrument Window Help			– o ×
· · · · · · · · · · · · · · · · · · ·			🖽 Assay 🕒 Run Summary 🐗 Analysis
Assay: Abby	Protocol 🖩 History 🎫 Notes		
			🗉 🖻 Add 🔻 Remove
Layout	Value		
	> Separation Matrix		
	> Stacking Matrix		
c management and a second s	> Sample		
	Separation Time (m 25.0		
F	> Separation Voltage 375		
	> Antibody Diluent Ti 5.0		
	> Primary Antibody 1 30.0		
4 12-230 kDa	> Secondary Antibody 50.0		
N	Well Row E1		
0 P	Detection Profile HDR	💿 Well Content 🛛 🕹	
		Name: K I	
		Name. Sample	
Template		Attribute:	° 8
		OK Capcel	Edit
		OK Carcer	
	7 8 0 40 44	40 42 44 45 46 47 49	40 20 24 22 23 24 25
Pio		2 13 14 15 10 17 10	
		Sample	
В		Antibody Diluent	
C Ant		Primary	
D Str		Secondary	
E		uminol/Peroxide	

- 2) 检查荧光内参:
 - ◆ 荧光内参是校正毛细管与毛细管之间电泳迁移率差异的,如果荧光内参定位错误,会影响靶蛋白的分子量计算;
 - ◆ 每根毛细管内含有 1kD, 29kD 和 230kD 这三个荧光内参(仅以 12-230 kD 的试剂盒为例);
 - ◆ 进入 Run Summary 界面,在 Separation 里检查每根毛细管内是 否含有三个荧光内参;

◇ 随后切换到 Analysis 界面,选择 Standards > Single View >
 Graph,检查每一根毛细管里荧光内参定位是否正确。荧光内参在
 Graph里被标注为 Std 1, Std 29 和 Std 230

◆ 如果出现定位错误,在正确的峰上点击鼠标右键调出菜单,然后 选择 Force Standard 来校正,如果校正出错,可选择 Clear All 恢 复默认设置;

Abby annotation training file - Compass for SW	- 0 ×
File Lait View Instrument Window Help	
Standards Samples = = •	Assay 🖓 Run Summary 🕼 Analysis
Experiment Sraph @Image @Lane Figure-1	Analysis Options Annotations
Sam Prim Seco C	Images *
Bio Anti Stre 1 190 Std 1	
M GFA 2 100	P1 High Dynamic Range 4.0 ~
M., GFA., GAR., 3 177	P2 High Dynamic Pango 4.0
M., GFA., GAR., 4 160 Bist Lobber	F2 Flight Dynamic Range 4.0 *
M. GFA. GAR 5 data Antiber Dilant	Peak Names *
Mi. GPA.: GAR.: 6 Internet State Sta	
M. GrA. GAR. / È	Name
Mi. GPA. GAR. 8 § 110	MW
M. GFA. GAR. 9 §10	
Mi CFA. OAR. 10 3 N	Color
	Caps
M GFA GAP 13 00	Modify
He Frid GAR 14 50	
He Firl GAR 15	
HeErk1 GAR_16 20 51429 514230	
He_ Erk1_GAB 17 19	
He. Erk1 GAR. 18	
He Erk1 GAR 19	
He Erk1 GAR 20	
He Erk1 GAR 21 III Peaks III Capitlaries Class All	
He Erk1 GAR 22 Cremela Parit Heire	
• He Erk1 GAR 23 sample rin. Cap Fe Post nerg Copy	
O He Erk1 GAR 24 Shiot La P11 2 201.8 15.2	
He Erk1 GAR 25 spint La Ant P11 3 5340 164	

[◇] 小贴士:1kD 的荧光内参通常信号最强

- 3) 检查Ladder:
 - ◆ 选择 Samples > Ladder, 检查 Ladder 的 6 个峰 (12kD, 40kD, 66kD, 116kD, 180kD 和 230kD; 仅以 12-230 kD 的试剂盒为
 例)的分子量是否正确,正常谱图如下所示:

◆ 如果 Ladder 分子量不正确,则不能利用 Ladder 来计算分子量, 可以在 Edit > Analysis... > Ladder Capillary 里面设成 None,这 样软件就不会通过Ladder计算分子量,而是依靠每根毛细管内的 荧光内参来计算分子量;

File	Edit	View	Instrument	Window	Help
≣ St		Cut			
■ Ex		Сору	Ctrl+C	- 0	📧 Graph 🖽 lı
Sam		Paste	Ctrl+V		24,000
🛦 Bi		Analysi	s		23, 000
M M		Prefere	nces		22, 000 21, 000

💿 Analysis: Abby_anno	otation_traini	ng_file				\times
Standards	Ladders					
Images Normalization	Ladder Capillary:	1 ~				
Standard Curves Loading Controls		None 1 2				
Peak Fit Lane Contrast		3				
Signal to Noise Advanced		5 6 7 8				
		9 10 11				
		12 13				
	Add	14 15 16				
	Add	17 18				
		19 20				
		21 22 23				
Import Ex	port	24 25	Cano	el	Apply	y

- 4) 检查样品:

 - ◆ 注意在右侧 Analysis Options>Images 里选择不同曝光时间(或 Edit > Analysis... > Images 里), 同时查看靶蛋白的 S/N 值, 至 少大于20 (S/N 值越大越好), 默认选择 HDR 模式;

			P Analysis Options Annotations	- 0
💿 Analysis: Abby_ann	otation_training_file	— 🗆 X	Images	*
 Analysis: Abby_ann Standards Ladders Images Normalization Peak Names Standard Curves Loading Controls Peak Fit Lane Contrast Signal to Noise Advanced 	Images Probe 1 Chemiluminescence High Dynamic Range Probe 2 Chemiluminescence High Dynamic Range	4.0 ×	Images P1 High Dynamic Range 4.0 P2 High Dynamic Range 4.0 Peak Names MW MW Color Caps Caps	
Import E	xport OK Car	ncel Apply	Modify	

◇ 检查化学发光信号是否淬灭, Sample>Graph>Graph
 Options...>All Exposures, 2s 之后信号降低超过10%, 峰高超过
 30万,如下图所示,建议稀释样品,以确保发光底物足量;

◆ 基线 Baseline 不超过目的条带峰高的20%或10000, 越低越好;

24 000	inage		rigu				1	4						
24,000 23,000 22,000 21,000 20,000	1s 2s 4s							Erk					latching Pea eak Names eak Values	k Names
18,000 17,000 16,000 15,000 14,000 13,000 12,000 11,000 10,000	8s 16s 32s 64s											 ▲ Fi ▲ B ▲ N ✓ = AI G 	tted Peaks aseline Fit oise Region I Exposures rid Lines	
9,000 8,000 7,000 6,000 5,000												✓ IndePlot Lal✓ Sam	pendent Pro bel ple 🗌 At	be Scale tribute
4,000 3,000 2,000 1,000	Lo-1-A			<u>na Ao</u>				J				 ✓ Prim ✓ Seco Capi 	ary □ At ondary □ At Ilary ☑ Ex	tribute tribute posure
U		12					40	MW (kDa)		68		116	180	230
Peaks 💷	Capillari	es												
ample	Pri	Сар	Pe	Na	Posit	MW	Height	Area	% Ar	Corr	Width	S/N	Baseline	
11-1-01	Erlz1	D1.	1	Erlz	260	47	16200.1	1750	100.0	1750	10.1	225.8	1402.1	

5) 若信号过饱和,在实验窗格会出现饱和警告, Image 界面选中 "Show All Image"后结果内会出现红色像素,如下图所示:

	He	Rab	Stell	22							
	He	Rab	Stell	23							
	He	Rab	Stell	24							
C	∗He…	Rab	Stell	25							
	Peak Warning: Saturated Signals										

- 6) 数据导出:
 - ◆ 在右侧 Analysis Options>Peak Names 里面设定靶蛋白的分子量 (需要根据 Abby 上跑出来的分子量设定)。点击 Name 右侧下 拉箭头选择 Create,然后输入靶蛋白名,接着在 MW 输入靶蛋白 分子量,在 Channel 处选择通道(化学发光),在 Color 选择靶 蛋白伪彩颜色,在 Caps 输入应用靶蛋白的毛细管(如需应用的 毛细管是第二根到第二十五根,则输入2-25),然后点击下方 Create。

🐱 Graph	🕮 Image 🖾 Lane Figure-1		I 📰 🗮 🗮 🖇 🖻 🗖	🗬 Analysis Options 🗹 Annotations	- 8
20, 000		14		Images	*
19, 000		Erk			
18, 000		Δ		P1 High Dynamic Range 4.0	\sim
17,000		Δ		P2 High Dynamic Range 4.0	~
15, 000			HeLa O. 1 Erkl	Paula Naman	
14, 000			GAR-HRP		~
: 13,000			Exposure. Unimit fi hunwa	Nama	
0 12,000 0 11,000					
9 10,000					
9,000				Color	
광 8,000 7,000				Caps	
6,000				Modify	
5,000					
4,000					
2,000			A. A.		
1,000					
0	12	40	66 116 180 230		
		MV (kDa)			
	Peak Names	5	Peak Names	*	
	Name		Name Frk1	~	
	MW Erk1		MW 47		
	[New]				
	Color		Color		
	Caps		Caps 1:14-25,2:14-2	25	
		Create	N	lodify	

◇ 也可以在 Edit>Analysis...>Peak Names 里 Apply Setting 处, Apply To 这里有下拉箭头,只要您在 Assay 里面命名了一抗的名称,这里会有相应的选择出现,您可以将设定的靶蛋白分子量应用到加了该靶蛋白一抗的孔上。点击 Apply 应用设置然后点击 OK 退出。

Abby_an ile Edit li	notation_ nstrumen	training t Windo	file - Co w Help	mpass fo	or SW																		-	đ	×
																					As	say 🔮 R	un Sumn	nary 🦛	Analys
un: Abby_	annotatio	n_trainir	ng_file			T Prote	ocol 🔛 H	istory 🔳	Notes																
Lavout			XBB																					Add 🔻 I	Remov
Layout											Probe 1	Probe 2													_
						> Sep	aration M	Aatrix																	
	-1					> Sta	cking Ma	trix																	
	c 1					> San	nple																		
	5 1 5 1					Sep	aration T	'ime (mi	n)		25.0														
	F 2					> Sep	aration \	/oltage ((volts)		375														
	н					> Ref	Plex Purg	e Time (min)			30.0													
	1 2					> Bio	tin Labeli	ng Time	e (min)		30.0														
	× 2	12-230 kC	20			> Ant	ibody Di	luent Tir	me (min)		5.0														
	MCCCCC					> Prir	nary Ant	body II	me (min)		30.0														
	•					> Sec	ondary A	Intibody	/ Time (m	in)	30.0	20.0													
						> Tot	arrioten	I FIKP II	me (min)			50.0													
						+ Der	Nell Row				- 11	11													
Template							inch non			_															
remplate																									E .
																									L
1	2	3	4	5	6	7	8	9	10	11	12	2 13	14	15	16	17	18	19	20	21	22	23	24	25	
Bio	MBL	MBL	MBL	MBL	MBL	MBL	MBL	MBL	MBL	MBL	. MBL.	MBL	HeL	HeL	HeL	HeL	HeL	HeL	HeL	HeL	HeL	HeL	HeL	HeL	
A	0.1 mg	0.08 m	0.06 m	0.04 m	0.1 mg	0.08 m	0.06 m	0.04 m	0.1 mg	0.08 m.		0.04 m	0.1 mg	. 0.08 m	0.06 m	0.04 m	0.1 mg	0.08 m	0.06 m	0.04 m	0.1 mg	0.08 m	0.06 m	0.04 m	
B Ant										Т	otal Prot	tein Bioti	n Labe	ing Reag	gent										i
											An	tibody Di	luent												i
C	-				_	0548/0		_	_		~	abouy Di	lucin	_	_	_					_		_		i II
D Ant	1-250/	1-250/	1-250/	1-250/	1:250/	GFAP/S	1-250/	1-260/	1-260/	1-250/	1:250/	1-250/	DTU	DTU	DTU	DTU	DTU	EI	R1 DTU	DTU	DTU	DTU	OTU	DTU	i
04	1.250/	1.230/	1.230/	1.230/	1.250/	1.250/	1.230/	1.230/	1.230/	1.250/	. 1.250/.	GAR	-HRP	RIU	RIU	RIU	RIU	RIU	RIU	RIU	RIU	RIU	RIU	RIU	i
E Str	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	RTU	
F										То	tal Prot	ein Strep	tavidin	HRP											i
J											Lur	ninol/Per	oxide												(

💿 Analysis: Abby_anno	tation_training_file			- 🗆 X
Standards	Peak Fit			
Images	Analysis Groups		Analysis Groups: fit	
Normalization	fit		Range	
✓ Peak Names			Minimum	1.0
Standard Curves			Maximum	250.0
Loading Controls			Waximum	250.0
Peak Fit			View	Analysis O Full
Lane Contrast	Add	Remove	Baseline	
Signal to Noise			Threshold	10
Auvanceu	Apply Default:			1.0
	fit	~	Window	15.0
	Apply Override:		Stiffness	1.0
	Apply To Group		Peak Find	
	Biot. Lad		Threshold	10.0
	Biot. Ladder 🛛 🔺		Width	0.0
	MBL 0.1		Width	9.0
	MBL 0.08		Area Calculation	Gaussian Fit 🛛 🗸
	MBL 0.06			
	Hela 0.1]	
	HeLa 0.08	Remove		
	HeLa 0.06			
	HeLa 0.04			
	0.1 mg/ml			
Import Ex	(po 0.08 mg/ml		OK Cano	el Apply
	0.06 mg/ml 🔍			

◇ 样品中靶蛋白的名字将会自动标注在 Graph 里。这时候您点击 Capillaries,这里将会显示靶蛋白的条带密度值(Area),您可以 利用 Ctrl+A 将 Capillaries 里的数值全部选中,然后复制粘帖在 Excel。

🗄 Standards 🚊 Samples 🔳 🔳		🚍 Assay 🚇 Run Summar	y 🟨 Analysis
■ Experiment	🖳 🕼 Graph 🛍 Image 🖾 Lane Figure-1	🊺 🖩 🗮 🗕 🕴 🖱 🗖 🛷 Analysis Options 🖬 Annotat	ions " 🗆
Sam Prim Seco C	a 20,000 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25	Images	\$
& Bio Anti Stre 1	10,000 x x x x x x x x x x x x x x x x x	NeLs 0.1	
M GFA GAR 2	8 0.00	Nela 0.00 P1 High Dynamic Pango 4.0	
M GFA GAR 3	1 20.000		
M GFA GAR 4	10,000	NeLs 0.06 P2 High Dynamic Range 4.0	×.
M GFA GAR 5	20,000	Nela 0.04 Peak Names	\$
M GFA GAR 6		Tek1	
▲ M GFA GAR 7	10,000	HeLa 0.1	
M GFA GAR 8	a	Name Name	
M GFA GAR 9		Teki MW	
M GFA GAR 10	10,000	NeLa 0.06 Color	
▲ M GFA GAR 11	20.000	Trki Cans	
M GFA GAR 12	. 10,000	ReLa 0.04	
M GFA GAR 13	4 20,000	Notify Notify	
He Erk1 GAR 14	20.00	Boki	
He Erk1 GAR 15	10,000	HeLa 0.08	
He Erk1 GAR 16	\$ 20.000	Nela 0.06	
He Erk1 GAR 17		Erk1	
He Erk1 GAR 18	10,000	HeLu 0.04	
He Erk1 GAR 19	12 40 66	116 180 230	
He Erk1 GAR 20	a www.ena		
He Erk1 GAR 21	Peaks III Capillaries		
He Erk1 GAR 22		Area % Area	Corr Aroa 8
9 He Erk1 GAR 23		Area % Area	Corr. Area
9 He Erk1 GAR 24	Sample Pri Capillary Erk1		^
He Erk1 GAR 25	HeLa 0.1 Erk1 P1:14 175025.8		
	HeLa 0.08 Erk1 P1:15 125906.0		
	HeLa 0.06 Erk1 P1:16 94606.0		
	HeLa 0.04 Erk1 P1:17 53646.6		
	HeLa 0.1 Erk1 P1:18 147941.6		
	HeLa 0.08 Erk1 P1:19 128488.1		~

7) 结果调整

♦ 点击 Lane 进入模拟胶图界面,可以点击 View All 全部选中;

	😤 Samples						
Experiment		V	iew All	Graph	🕲 lmage	🖽 Lane	Figure-1
					. <u>-</u> Գ	<u>-6 -8 .</u>	

♦ 也可以点击 View Selected,利用 Ctrl 键选择您想要展示的泳道;

🗄 Stand	dards	😂 Sampl	es [
I Exper	iment			View Selected Graph 🖼 Image 🖽 Lane Figure-1
Sam	Prim	Seco	С	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
🛦 Bio	Anti	Stre	1	kDa Herr Herr Herr Herr Herr Herr
M	GFA	GAR	2	230 -
M	GFA	GAR	3	180 -
M	GFA	GAR	4	
M	GFA	GAR	5	116 -
M	GFA	GAR	6	1.00
🔺 M	GFA	GAR	7	
M	GFA	GAR	8	<u> 99</u> -
M	GFA	GAR	9	
M	GFA	GAR	10	-Erk1
🛦 M	GFA	GAR	11	40 -
M	GFA	GAR	12	**
M	GFA	GAR	13	
He	Erk1	GAR	14	
He	Erk1	GAR	15	
He	Erk1	GAR	16	
He	Erk1	GAR	17	19
He	Erk1	GAR	18	12 -
He	Erk1	GAR	19	
He	Erk1	GAR	20	1:141:151:181:201:211:24

◆ 可以通过 View>Filter 或者直接点击 Experiment 中的某根毛细管 展示结果,鼠标右键 Hide 即可隐藏该样品的结果,若不想隐藏, 选择 View>Show Hidden 即可显示隐藏的毛细管。

	🖶 Assay 🕒 Run Summary	🏨 Analysis
🗠 🕘 🗳 🔠 🗮 🗮 🗖 🗖	a Analysis Options Annotations	- 0
Contrast Adjus	tment es	*

◇ 如果您想精确调节对比度,可以进入 Edit>Analysis...>Lane Contrast,选择 Fixed Levels,在想调节的检测通道输入 White Level 和 Black Level 的值。

or Analysis: Abby_anno	otation_training_file			\times
Standards	Lane Contrast			
Standards Ladders Images Normalization ✓ Peak Names Standard Curves Loading Controls Peak Fit Lane Contrast Signal to Noise Advanced	Lane Contrast			
Import Ex	cport OK Ca	incel	Apply	/

◇ 可以通过切换 Edit>Analysis...>Signal to Noise 选择不同的信噪 比计算方法。Signal-to-Noise Ratio 仅适用于 Compass (v6.0.0) 及以上版本, Full 为噪声区域选择沿x轴(kDa)的整个数据范围。 使用的默认范围将是运行数据的大小范围:2-40、12-230或66-440 kDa。Custom 允许您沿着x轴(以kDa为单位)设置数据范围,以缩 小用于从信号到噪声计算的搜索区域。要使用此选项,需输入 Start 和 End 值。

💿 Analysis: Abby_ann	otation_training_file			\times
Standards Ladders	Signal to Noise			
Images Normalization ✓ Peak Names Standard Curves Loading Controls Peak Fit Lane Contrast Signal to Noise Advanced	S/N Method: Signal-to-Noise R → Noise Region S Full Custom Start 5.0 End 10.0			
	<			>
Import E	xport OK Can	cel	Apply	(

◆ 右上角的 Lane Options,包括基线校正开关,显示/隐藏样本名、 一抗/二抗名和对应浓度及毛细管序列号;

🗷 Graph 🗐 Image 🗐 Lane Figure-1	📃 🔄 🖷 🔠 🗮 😑 🗖 🕼 Analysis Opti
c^{+} c^{0} c^{+} c^{0} c^{0} c^{0} c^{0} kDa ke^{D} ke^{D} ke^{D} ke^{D} ke^{D} ke^{D} 230 -	× Baseline On
180 -	✓ Independent Probe Scales
	✓ Lane order by Probe
116 -	Lane Label
	Sample Attribute
66 -	Primary Ab Attribute
	Secondary Ab Attribute
- Fivir 1	Capillary
40 -	✓ Named Peaks

◇ 为了使结果更美观,您可以点击 View>View Region,在 Range 处把 Analysis 切换为 Full,点击 OK 即可进一步压缩条带。

🇄 🕸 🌚	anno	otation_training_file - Co	(
File Edi	t Vie	w Instrument Window	🔬 🛛 🧔 View Region	\times
🗮 Stand	aı 🔸	Selected		
🔳 Experii	m	All	Range	
Sam I	Pr	Standards	Analysis O Full O Custom	
🔺 Bio /	Ai 🖕	Samples	Lower 1.0 Upper 250.0	
M (GI	Grouping	1.0 oppen 230.0	
M (Gl	orouping		
M (GI	Filter	OK Cancel	
M 0	GI	View Region	Current	- 1
M 0	GI	Show Hidden		

◆ 图片调整好以后,在图片上点击鼠标右键,出现 Copy,选中 Copy,出现新窗口,选择相应的保存格式,点击 Save...可将图 片另存在您指定的地方。

د Graph ۱ الله السقوة الله Lane Figure - 1 م ا	
30 -	
180 -	
16 -	
66 -	
-Erk1	Copy Lane X
40 -	
Conv	PNG Format
сору	O JPG Format
	O BMP Format
12 -	Save Copy Cancel

- 8) 结果注释
 - ◇ 点击 Annotations 可以进行泳道图结果注释,选择 Create a figure 新建注释;

🗏 Assay 🕒 Run Summary	Analysis
🕸 Analysis Options 🗹 Annotations	
	/ D G 🛆 🗊
Cı	eate a figure

◆ 在 Crop Regions 内, Caps 右侧可输入想要展示的毛细管/泳道序号,也可以在左侧 Experiments 内通过 Ctrl 进行选择;在 MW Range 处可单击手动输入想展示结果的分子量范围,也可以在 Lane 界面通过鼠标拖动紫色边框进行裁剪; Channel Contrast 展示的通道与左上角选择的不同颜色通道图标一致,选好之后点击

- ♦ 想分别添加多个通道结果点击 MW Range 下方空白处进行编辑。
- ◇ 想重新编辑分子量范围或选择通道需点击 Re-crop 。单击通道右 侧会显示三个小点,点击并勾选 Custom Contrast 后可进行不同 通道对比度的调节。

😹 Graph 🗐 Image 🗇 Lane Figure-1 👘 🖓	* Analysis Options Annotations
	Figure-1 ~ 凸 凸 白
Lo Biot ladder 02	Crop Regions *
116 -	Caps 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1
	MW Range Channel Contrast
66 - HSP60	33-152 CHEMI P1
40	Re-crop
🗘 🕼 🕼 🖓 Custom Contrast	
1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:101:111:121:121:141:151:	Lane Labels *
Custom Contrast	Band Labels *
CHEMI P1 < >	Title & Notes *
	settings *
OK Cancel	

◆ 在 Lane Lable 处可进行样本名和不同条件处理的编辑,默认显示 Assay 内编辑好的样本名和毛细管序号。可使用 Assay 界面实验 设计,也可以自己重新编辑。

C :	- 1	-
Figu	re-1 V La da	<u>с</u> Ш
Cro	o Regions *	^
Lane	e Labels *	
Gro	up SampleGroup 🗸 🗅 🗈	
Link	to Sample v	
St		
	Lane Label	
1	PS HeLa	
2	PS HeLa	
3	PS HeLa	
4	PS HeLa	
5	PS HeLa	
6	PS HeLa	
7	PS HeLa	
8	PS HeLa	
9	PS HeLa	
10	PS HeLa	

◆ 若想添加不同处理(如磷酸化)可点击 Group 右侧图标新建,然 后在 Group 处输入组名, Link to 选择 None,在下方毛细管序号 右侧手动输入处理情况。

Figur	re-1 ~ C	百合會
Crop Lane	PRegions Labels	* ^
Gro	up STIMULATION	
Link	to None	~
St	yle 🞞 🗟 🛪 📫 🗡	P
	Lane Label	
1	+	
2	+	
3	+	
4	+	
5	-	
6	-	
7	• · · · · · · · · · · · · · · · · · · ·	
8	-	
9	+	

♦ Style 的不同标签可以自定义下划线、位置、旋转角度等。

◆ Band Lable 条带标签可使用已命名的目的峰也可以重新编辑,
 Style 处可自定义条带位置和展现形式。

Analys	is Options 🗹 Annotat	ions	s	- 6
Figure-1		~	6	百 企 🛍
Crop R	egions			×
Lane La	bels			×
Band La	abels			*
		_	_	
Group			~	6
Link to	Ladder			~
	Band - Peak Group 1			
Style	→ IP →			
Band L	.abel	Μ	W	(kD
Title &	Notes			×
Setting	S			×

◆ 使用 Title & Notes 可以添加结果标题和注释,点击 #cbz 会在 Notes 内添加该结果文件名。

Analy:	sis Options 🗹 Annotations	· 🗆
Figure-	1 ~ D G 1	Ŵ
Crop R	egions	¥
Lane La	abels	×
Band L	abels	¥
Title &	Notes	*
Title Notes	HELA LYSATE TEST Demo Jess Training BActin +HSP60.cbz #cbz	,
Setting	js	¥

♦ 在 Settings 可点击 Font 右侧三个小点进行字体字号的更改。

	子仲	~
Analysis Options I Annotations Figure-1 Image: Crop Regions Crop Regions * Lane Labels * Band Labels * Title & Notes *	字体(E): Pitcrosoft YaHei UI Microsoft YaHei UI Microsoft YaHei UI Microsoft YaHei UI Microsoft YaHei UI Microsoft YaBa Microsoft YaBa Micro	大小(S): 小五 四号 小五 万号 小五 六号 小六 七号 八号 文软件
Settings * Font Microsoft YaHei UI	脚本(R): 中文 G82312 显示更多字体	~ 取消

◇ 编辑结束后可在结果图片点击右键保存,或选择新建编辑右侧第二个图标保存(支持 tif/png/jpg 三种格式)。

🔚 Assay 🕒 R	lun Summary	Analysis
Analysis Options	Annotatio	ns 🗖 🗖
Figure-1	~	0 6 1
Crop Regions	Export sele	ected figure
Lane Labels		*
Band Labels		¥
Title & Notes		*
Settings		¥

8. 注意事项

- 1) 试剂盒务必请按要求存放,橙色试剂盒要保存在18 24 ℃,如果不 小心冷藏或冬季室温过低,需要在18 – 24 ℃放置 24 小时后才能使 用,否则电泳会出现异常;
- 2) 加样时避免打出气泡,尤其样品中的气泡很难戳破;
- 3) 如果加样过程中要暂停,请务必盖上板盖,以减少蒸发;
- 4) 加样后务必盖上板盖,才能去离心;
- 5) 加完样板子务必离心;
- 6) 板式离心机请勿制冷;
- 7) 毛细管和板上的封膜都在实验即将开始前才打开,请勿提前打开;
- 8) 毛细管和板子都是一次性的, 请勿重复使用;
- 9) 更多实验优化,参见《Size Assay Development Guide.pdf》;
- 10)Compass软件不限制安装,最新版可从网站下载: <u>http://www.proteinsimple.com/compass/downloads/</u>
- 11)如果您有任何问题,可关注下方 ProteinSimple 的公众号,提交技术 咨询。

9. 常见问题

现象	可能原因	解决方法
实验结束后没有或找不到	Abby 和 电脑主机的通讯	确认Abby处于开机状态,
运行结果文件(run file)	连接断开	打开 Compass 软件,确认
		连接Abby,点击
		Instrument > Runs…,在
		出现的窗口找到运行结果
		文件,点击Save As保存
• ▲ 芯火山 会 人 动 助 世 工	Abby 板子没有在室温保	Abby 板子需要在实验开始
3个灾元内参全部弥散九	存,造成试剂成分沉淀析	前室温(18-24℃)放置
法辨认	出	至少24小时以上
		请核对绿色纸包上的标
七 111 七 1 1 古 1 1 1 1 1 1 1 1 1 1 1 1 1 1		记, Standard Pack 1为
灾尤内参分离谐图与顶期	使用了错误的荧光内参	12-230kD , Standard
个符		Pack 3 为 66-440kD ,
		Standard Pack 5为2-40kD
	长了一步长过大声。 长	上机前室温离心,确保各
长火山会的山又石仙统	极于上机前没有离心。极	孔内无气泡。如果再离心
灾尤内参跑出了毛细官	于住运输过住中或者上件	后看到有气泡,请用枪头
	时有气泡	将其戳破
芯火山会讲〉 又王伽德	Abby HIZHW # HW H	Abby 板子需要在实验开始
灾元内参进八丁七细官,	ADDy 极于彼受藏或受乐	前室温(18-24℃)放置
但定没有进一步分离	过, 适成试剂成分析出	至少24小时以上
Craph View 安田地正安八		选择短的曝光时间(例如
Graph view 友现靶蛋白分	化学发光信号淬灭	1s) 查看结果。可减少样
丁重位直有凹功		品浓度
化学发光信号与蛋白量不	工 上以 则从 你 时 士 田 上	通过样品梯度稀释确定实
成线性	个在检测的线性泡围内	验的检测上限和下限
儿兴小业公日壬后月兴	12 11	通过抗体梯度稀释确定最
化字友光信亏重复性差	抗体不够重	佳的抗体稀释度
	Biotin Labeling Reagent	Reconstitution Agent 1 种
	没有充分重悬	Reconstitution Agent 2 混
Total Protein 试剂盒批次	Diatin Laboling Descent	合后上下吸打 6-10 次,
内重复性差	DIUTIN LADEIING REAGENT	保证充分混匀
	小大剂叶阳田	在上机前 30 分钟内制备
		Biotin Labeling Reagent

10. 订购信息

项目	订货号
12-230 kDa Separation Module, 2 x 13 capillary cartridges	SM-W001
12-230 kDa Separation Module, 8 x 13 capillary cartridges	SM-W002
12-230 kDa Separation Module, 2 x 25 capillary cartridges	SM-W003
12-230 kDa Separation Module, 8 x 25 capillary cartridges	SM-W004
66-440 kDa Separation Module, 2 x 13 capillary cartridges	SM-W005
66-440 kDa Separation Module, 8 x 13 capillary cartridges	SM-W006
66-440 kDa Separation Module, 2 x 25 capillary cartridges	SM-W007
66-440 kDa Separation Module, 8 x 25 capillary cartridges	SM-W008
2-40 kDa Separation Module, 2 x 13 capillary cartridges	SM-W009
2-40 kDa Separation Module, 8 x 13 capillary cartridges	SM-W010
2-40 kDa Separation Module, 2 x 25 capillary cartridges	SM-W011
2-40 kDa Separation Module, 8 x 25 capillary cartridges	SM-W012
12-230 kDa Fluorescence Separation Module, 8x13 capillary cartridges	SM-FL001
66-440 kDa Fluorescence Separation Module, 8x13 capillary cartridges	SM-FL002
2-40 kDa Fluorescence Separation Module, 8x13 capillary cartridges	SM-FL003
12-230 kDa Fluorescence Separation Module, 8x25 capillary cartridges	SM-FL004
66-440 kDa Fluorescence Separation Module, 8x25 capillary cartridges	SM-FL005
2-40 kDa Fluorescence Separation Module, 8x25 capillary cartridges	SM-FL006
Anti-Rabbit Detection Module	DM-001
Anti-Mouse Detection Module	DM-002
No Secondary Detection Module	DM-003
Biotin Detection Module	DM-004
Anti-Human IgG Detection Module	DM-005
Anti-Goat Detection Module	DM-006
Anti-Rabbit NIR Detection Module	DM-007
Anti-Rabbit IR Detection Module	DM-008
Anti-Mouse NIR Detection Module	DM-009
Anti-Mouse IR Detection Module	DM-010
Total Protein Detection Module for Chemiluminescence based total protein assays	DM-TP01
Protein Normalization Module for Fluorescence-based total protein assays	DM-PN02
Stellar Anti-Rabbit IR Detection Module	DM-013
Stellar Anti-Rabbit NIR Detection Module	DM-014
Stellar Anti-Mouse IR Detection Module	DM-015
Stellar Anti-Mouse NIR Detection Module	DM-016
Stellar Total Protein Detection Module	DM-TP03

bio-techne[®] protein simple

订货号 项目 EZ Standard Pack 1 12-230 kDa PS-ST01EZ-8 EZ Standard Pack 2 12-230 kDa PS-ST02EZ-8 EZ Standard Pack 3 66-440 kDa PS-ST03EZ-8 EZ Standard Pack 4 66-440 kDa PS-ST04EZ-8 EZ Standard Pack 5 2-40 kDa PS-ST05EZ-8 Fluorescent 5x Master Mix 1 PS-FL01-8 Fluorescent 5x Master Mix 3 PS-FL03-8 Fluorescent 5x Master Mix 5 PS-FL05-8 **Total Protein Streptavidin-HRP** 042-976 Streptavidin-HRP 042-414 Streptavidin-NIR 043-816 042-195 Sample Buffer Anti-Rabbit Secondary HRP Antibody 042-206 Anti-Rabbit Secondary NIR Antibody 043-819 Anti-Rabbit Secondary IR Antibody 043-820 20X Anti-Rabbit HRP Conjugate 043-426 Anti-Mouse Secondary HRP Antibody 042-205 Anti-Mouse Secondary NIR Antibody 043-821 Anti-Mouse Secondary IR Antibody 043-822 042-203 Antibody Diluent 2 10X System Control Primary Antibody-Rabbit for Chemiluminescence 042-196 10X System Control Primary Antibody-Mouse for Chemiluminescence 042-191 Wash Buffer 042-202 **Chemiluminescent Substrate** PS-CS01 ERK1 Primary Antibody for Size Assays 042-486 HeLa Lysate Controls 042-488 Luminol-S 043-311 Peroxide 043-379 Anti-Goat Secondary HRP Antibody 043-522-2 Anti-Human IgG Secondary HRP Antibody 043-491-2 Secondary Streptavidin-HRP 043-459-2 Milk-free Antibody Diluent 043-524 12-230 kDa Pre-filled Plates PS-PP03 66-440 kDa Pre-filled Plates PS-PP04 2-40 kDa Pre-filled Plates PS-PP05 25-Capillary cartridges for Size based Separation PS-CC01 PS-CC02 13-Capillary cartridges for Size based Separation

bio-techne[®] protein simple

biotechne[®] protein simple

NP1000 超微量蛋白修饰谱图研究平台

主要功能:

利用靶蛋白各修饰体(如磷酸化)的电荷差异进行分离, 后续通过靶蛋白泛抗体即可获得靶蛋白的修饰谱图,有 助于发现靶蛋白的新异构体或表征某类异构体的丰度 (如磷酸化百分含量等),从而阐明信号转导通路和调 控机理。

独有技术优势

1. 可以对微量样本进行分析:

本平台是目前唯一可用于超微量样品检测的蛋白质研究平台。可检测样本包括: ◆ 激光捕获显微切割(LCM)样本

- ◆ 体外培养的细胞
- ◆ 原代细胞
- ◆ 干细胞(肿瘤干细胞、胚胎干细胞)
- ◆ 外周血单个核细胞
- ◆ 无细胞体液(脑脊液、血清等)
- ◆ 流式细胞仪分选细胞
- 可以有效区别蛋白质表达的异构体,翻译及后修饰等,并进行定量分析: 如检测蛋白质磷酸化、糖基化、乙酰化等修饰,用于揭示疾病发生的机理或寻找 新的生物标志物以及信号通路研究等。应用领域包括:
 - ◆ 细胞信号通路研究
 - ◆ 细胞死亡和凋亡通路研究
 - ◆细胞耐药性:如激酶抑制因子的药效研究
 - ◆ 分子靶向药物的作用机理研究
 - ◆ 生物标志物的发现和验证: 如肿瘤和神经退行性疾病的特异性生物标志物
 - ◆ 干细胞研究:如造血干细胞和胚胎干细胞的分化
 - ◆蛋白质纯度分析:如单克隆抗体纯度分析
 - ◆蛋白质翻译后修饰和异构体、差异表达研究
- 完整的靶蛋白修饰谱图: 本平台可用靶蛋白的泛抗体来检测 靶蛋白质的电荷异构体,而无需使 用针对各种异构体的特异性抗体 (如磷酸化位点特异性抗体),极 大增强实验的灵活性以及降低实验 成本。

