设为首页 | 添加收藏
关于我们
广州市皓博仪器仪表有限公司
地址:广州市番禺区洛浦街上漖村迎宾路99号卓维商务楼201A
TEL:020-34702588      020-34703386
FAX:020-34702518
技术支持 您的当前位置:首页 > 技术支持
科普丨合成生物学之基本概述
[ 发布日期:2023-8-8 8:56:05    阅读次数:184 ]
与传统生物学技术的最大差别在于,合成生物学(synthetic biology)是工程化的生物学,科学的核心是发现,技术的核心是发明,而工程的核心则是建构。工程化,即以“设计-合成-检测”并反复循环改进,以达到优化的研究范式。

合成生物学是一门汇集生物学、基因组学、工程学和信息学等多种学科的交叉学科,其实现的技术路径是运用系统生物学和工程学原理,以基因组和生化分子合成为基础,综合生物化学、生物物理和生物信息等技术,旨在设计、改造、重建生物分子、生物元件和生物分化过程,以构建具有生命活性的生物元件、系统以及人造细胞或生物体。简而言之,合成生物学是以“建构”为核心的新型交叉技术学科,将生物学与其他学科及范式进行深度交叉融合,充分发挥定量、设计、工程化等特征,正在发展成为一个基础性和工具性学科,被认为是认识生命的钥匙和改变未来的颠覆性技术,被誉为“第三次生物科学革命”,是推动人类从“认识生命”(“造物致知”)到“设计生命”(“造物致用”)跨越的重要技术路径。

通俗来讲,合成生物学就像奶牛产奶的过程:奶牛吃进低价值的草,而产出的却是高价值的牛奶。在合成生物学中,底盘细胞相当于奶牛,各种原料相当于低价值的草料。通过基因技术编辑过的底盘细胞,添加低廉原料后经过发酵等一系列工艺产生的高价值的化学或生物原料,就相当于生产的牛奶。高价值的牛奶最终帮助企业换取到金钱,合成生物学就完成了一整套“点石成金”的闭环过程。根据麦肯锡研究,生物制造的产品可以覆盖60%化学制造的产品,未来生物制造的方式有望对医药、化工、食品、能源、材料、农业等传统行业带来巨大影响,在2030-2040年期间,合成生物学技术每年将为全球带来2万亿至4万亿美元的直接经济效益。

合成生物学的前世今生

1911年,“synthetic biology”一词最早由法国物理化学家Stephane Leduc在其所著的《生命的机理》(The Mechanism of Life)一书中首次提出,在该书中其试图利用物理学理论解释生物起源和进化规律,认为“构成生物体的是其形态”,并归纳为“合成生物学是对形状和结构的合成”。

合成生物学的起源可以追溯到1961年弗朗索瓦·雅各布(Francois Jacob)和雅克·莫诺(Jacques Monod)的一篇里程碑式的出版物。他们对大肠杆菌中lac操纵子的研究的见解使他们假定存在调节性双基因表达。

随着20世纪70年代和80年代分子克隆和PCR的发展,基因操作在微生物学研究中变得广泛,为设计人工基因调控提供了技术手段。

20世纪90年代中期,自动DNA测序和改进的计算工具使完整的微生物基因组得以测序,用于测量RNA、蛋白质、脂质和代谢物的高通量技术使科学家能够生成大量的细胞成分及其相互作用。这种分子生物学的“放大”产生了系统生物学领域,因为生物学家和计算机科学家开始将实验和计算结合起来,对细胞网络进行反向工程。

合成生物学真正被广泛关注始于21世纪初,一系列颠覆性成果在这个阶段陆续发布。

2000年,波士顿大学Collins团队受噬菌体λ开关和蓝藻昼夜节律振荡器的启发,设计合成了双稳态基因网络开关;普林斯顿大学Elowitz和Leibler基于负反馈调控原理设计了基因振荡网络。

2002年,纽约州立大学石溪市分校Wimmer团队通过化学合成病毒基因组获得了具有感染性的脊髓灰质炎病毒-人类历史上首个人工合成的生命体。

2010年,美国Venter团队宣布首个“人工合成基因组细胞”诞生。他的团队设计、合成和组装了1.08Mb的支原体基因组(JCVI-syn1.0),并将其移植到山羊支原体受体细胞中,产生了仅由合成染色体控制的新支原体细胞。

2013年,青蒿素的生物合成生产。

2014年,拓展遗传密码子入选Science年度十大科学突破。美国Scripps研究所Romesberg团队设计合成了一个非天然碱基配对:X和Y,并将它们整合到大肠杆菌基因组。理论上,遗传字母表从4个变成6个密码子可以从64个扩充到216个,这意味着在控制条件下,未来的生命形式有无限种可能。

2016年,Nielsen等人发表了Cello,这是一个卓越的端到端计算机辅助设计系统,用于E.coli 中的逻辑构造。在过去十年中,这可能是合成生物学家最满意的,因为它通过标准化、表征和自动化设计实现了许多生物学工程功能。

2017年,基于CRlSPR的快速诊断。

2018年,具有逻辑控制的CAR-T细胞;具有合成融合染色体的酵母;自组织多细胞结构。

2019年,大肠杆菌基因组全合成;大肠杆菌基因组碳固定;大麻素的合成生产。

进入21世纪,合成生物学的发展可分为4个阶段:

1、创建时期(2000-2003年):产生了许多具备领域特征的研究手段和理论,特别是基因线路工程的建立及其在代谢工程中的成功运用;
2、扩张和发展期(2004-2007年):工程技术进步较缓慢,领域有扩大趋势;
3、快速创新和应用转化期(2008-2013年):这一阶段涌现出的新技术和工程手段使合成生物学研究与应用领域大为拓展;
4、发展新阶段(2014年后):工程化平台的建设和生物大数据的开源应用相结合,全面推动生物技术、生物产业和生物医药“民主化”发展。

合成生物学的关键底层技术

合成生物学产业链分布情况

合成生物学具有强科技属性,从微观的基因合成到宏观的放大生产的发酵工程 存在大量know-how,技术壁垒高,按照所处的行业上下游,可被划分为三个层面:工具层/原料层、软件/硬件层以及应用层。

1、产业链前端:以基因编辑相关技术公司为主,为元件构建提供技术支撑,技术要求包括基因合成、编辑、组装、测序等。

2、产业链中端:以合成生物学平台公司为主,通过搭建技术平台,形成项目经验积累,为下游客户提供研发支撑。

3、产业链后端:则以产品型公司为主,主导产品的放大生产与下游市场应用,市场可延伸至医疗、化工、食品、农业等多种领域。

关键底层技术发展--DNA合成成本下降

DNA合成成本下降速率快过摩尔定律,合成片段长度、精度大幅提升推动基因合成下游应用。

1、20世纪80年代开发的基于亚磷酰胺的DNA合成法为DNA合成仪的创制奠定了基础,之后三种芯片式原位合成技术(光刻合成、电化学脱保护合成、喷墨打印)和超高通量合成技术相继被开发出来,推动了合成DNA效率的提升和成本的下降,2021年每Mb碱基合成的平均费用已由2001年的超过5000美元下降至0.006美元,未来随着第四代酶促合成技术的发展和成熟,DNA合成有望进一步降低成本,实现更大规模化生产;

2、目前工业化DNA合成工艺通常从化学合成寡核苷酸起始,更长的DNA分子是以寡核苷酸为原料通过酶促反应逐步拼接和组装得到,寡核苷酸单步合成效率虽然已高达99.5%,但合成长度达到200bp时产率即降至约35%,由于该产率杂质过多难以纯化得到目的片段,而要合成kb级长度的寡核苷酸单步合成效率必须达到99.9%以上才能获得同样的产率,随着微阵列式DNA合成技术的出现,合成所需的反应浓度更低(飞摩尔级),同时保证了成本和合成的准确度,当该技术目前主要缺陷在于合成错误率较柱式法更高,仍有进一步提升的空间。

关键底层技术发展--基因编辑与迭代

基因编辑:在生物体的基因组中特定位置插入、删除、修改或替换DNA。基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂(DSB),诱导生物体通过非同源末端连接(NHEJ)或同源重组(HR)来修复DSB,人工主导或干扰这个修复过程就可以把特定DNA序列进行删除或者插入外源基因。

基因编辑技术的迭代:1996年,第一代代基因编辑技术,经基因工程改造的锌指核酸酶(ZFNs)被设计出来,开启人工改造生命体的旅程。2009年,第二代基因编辑技术类转录激活因子效应物核酸酶(TALENs)诞生。但前两代技术构建周期长,步骤繁琐,难以进行高通量基因编辑,极大限制了其推广应用。直到2012年,CRISPR技术横空出世,与ZFNs和TALENs技术相比,CRISPR/Cas9的设计要简单得多,而且成本很低,对于相同的靶点,CRISPR/Cas9有相当甚至更好的靶向效率。

CRISPR/Cas9:实现基因编辑能力的重大飞跃。作为第三代基因编辑技术,相比前两代,其优势明显:1)构建简单方便快捷,适用于任何分子生物实验室;2)用于基因组的点突变编辑优于ZFN或TALEN;3)CRISPR/Cas9精确的切口酶活性用于基因治疗安全性高于ZFN或TZLEN。根据头豹研究数据,2016-2018年,中国CRISPR/Cas9行业市场规模(按销售额统计)从9.7亿元人民币增长至24.8亿元人民币,年复合增长率高达59.6%。

关键底层技术发展--DNA组装与测序

DNA组装:技术相对成熟、低成本、自动化、一体化是未来发展方向。受到技术的限制,DNA片段从头合成的长度有限,更长基因或基因组有赖于通过核苷酸片段的酶促组装或体内组装获得,通常使用的寡核苷酸组装方法有两种:连接酶组装法(LCR)和聚合酶组装法(PCA)。使用短初始片段组装染色体或基因组长度DNA所需的分层组装次数较多,过程中所需的克隆挑选和测序等质控成本也会相应增多,具有低成本、自动化和一体化特性的微流控组装体系将成为寡核苷酸体外合成和组装整合平台开发的方向。

DNA测序:测序技术不断迭代,测序成本、长度、速度均得到指数级提升。DNA序列决定了DNA分子中核苷酸排列顺序。大规模基因组测序工作可以提供有关自然界生物的信息,帮助合成生物学家从中构建生物元件和装置,同时测序可以验证制造的系统是否符合预期以及快速、廉价和可靠的测序可以促进所合成的生命系统的快速检测和鉴定。DNA测序技术在过去几十年间得到了快速的发展,从最初的Sanger测序发展到四代纳米孔测序,基因测序成本也由2001年每基因组的接近1亿美元下降至2021年的0.006美元。随着技术的迭代,测序长度、速度等都有了质的飞跃。

资料来源:上海市华兴健康产业合作促进中心、BiG生物创新社、生物制品圈等
[返回]
代理品牌:
Copyright © 2003-2022 gzhopeco.com, All Rights Reserved 粤ICP备12085960号-2 版权所有 广州市皓博仪器仪表有限公司
地址:广州市番禺区洛浦街上漖村迎宾路99号南座201A TEL:020-34702588 FAX:020-34702518

  技术支持:互信网络